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It is shown that the approximation order from bivariate piecewise polynomials
of degree <k in C” is no better than & when k <3p +2 (even if only the three-
direction mesh is considered). This complements the earlier result that the
approximation order is full, i.e, equals K +1, for any triangulation as soon as
kz3p+2. € 1993 Academic Press, [nc.

INTRODUCTION

It is the purpose of this note to show that the approximation order from
the space

p»
Hk,A

of all piecewise polynomial functions in C” of polynomial degree <k on a
triangulation 4 of R? is, in general, no better than k in case k <3p + 2.
This complements the result of [BH88] that the approximation order from
11} , for an arbitrary mesh 4 is k+1if k=3p+2.
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Here, we define the approximation order of a space S of functions on R?
to be the largest real number r for which

dist(f, 6,,S) < const, h’

for any sufficiently smooth function f, with the distance measured in the
L,norm (1< p< o) on R? (or some suitable subset G of R?), and with
the scaling map o, defined by

onf = /).

In particular, the approximation order from 7I7{ , cannot be better than
k + 1 regardless of p and is trivially K+ 1 in case p= —1 or 0. Thus, an
upper bound of k is an indication of the price being paid for having p much
larger than 0.

It turns our that the upper bound to be proven here already holds when
A is a very simple triangulation, viz. the three-direction mesh, i.e., the mesh

3
4:=) Re,+Z?
i=1

with
e,:=(1,0), e,:=(0, 1), ey:=(1,1)=¢e +e,.

A first result along these lines was given in [ BH83, ], where it was shown
that the approximation order of 7} , (with 4 the three-direction mesh) is
only 3, which was surprising in view of the fact that all cubic polynomials
are contained locally in this space. [J83] showed the corresponding result
for C'-quartics on the three-direction mesh and [BH83,] provided upper
and lower bounds for the approximation order of

S = ”2).4

for arbitrary & and p.

For 2k —3p <7, the approximation order of S was completely deter-
mined in [J86]. Since it is easy to determine the approximation order of
any space spanned by the translates of one box spline [BH82/83] with the
aid of quasi-interpolants, it is tempting to consider, more generally, local
approximations from S, i.e., approximations to the given f which are linear
combinations of box splines in S, with the restriction that the coefficient of
any particular box spline should depend only on the behavior of f near the
support of that box spline. The resulting approximation order has been
termed the local approximation order of S in [BJ]. The local approxima-
tion order of S was entirely determined in [J887]. In particular, it is shown
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there that the local approximation order of § can never be full, i.e., equal
k + 1. It is also conjectured there that the local approximation order equals
the approximation order when & < 3p + 2. In addition, it is shown in [J88]
that the approximation order of § is at least & when k> 2p + 2. This,
together with the result to be proved here and the result from [J86], gives
the precise approximation order for S for p <5 and all 4. Finally, the fact
that the approximation order from S is only & when £=3p+ 1 was
demonstrated in [BH88] for p=1, 2, 3.

In all of these references cited, only the approximation order with respect
to the max-norm was considered.

In addition to the notation already defined in the course of the above
introduction, we also use the following: We denote by

nk (”<k )
the collection of all polynomials of total degree <k (<k). We denote by
< ¥, >
the linear polynomial whose value at x € R? is the scalar product ¢ y, x> of
y with x. We write
D, :=y(1)D,+ y(2) D,

for the (unnormalized) directional derivative in the direction y, with D, the
partial derivative with respect to the ith argument, i=1, 2. Thus,

D,=D,,

but we use this abbreviation also for /=3, and use, correspondingly, the
convenient abbreviation
3

D*:= ] D,

i=1
with ae Z°, . For such a, we write
lal =3 a(i).
Correspondingly, we write
3 3
=] and  V*:=]] Ve,
i=1 i=1
with
. =f1+e) and V,I=1—T, I
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Finally, we denote by p(D):=3, c(2)D* the constant coefficient differen-
tial operator associated with the polynomial p =Y, c(a)()* For example,

D,= e, D>.

MAIN RESULT

The main result of this note is the following

THEOREM.  The approximation order of S:=1I} , (inany L,, | < p< )
is at best k when k <3p+ 2, p>0, and A is the three-direction mesh.

In this section, we outline the proof, leaving the verification of certain
technical lemmata to a subsequent section.

The proof uses the same ideas with which the special cases p=1 and 2
were handled in [BH83,], [J83], and [BHB88], respectively, ie., the
construction of a local linear functional which vanishes on 17} , but does
not vanish on some homogeneous polynomial of degree k¥ + 1 and whose
integer translates add up to the zero linear functional. But the construction
of the specific linear functional follows the rather different lines of {J86].

To begin with, recall from [BHS83,] that the approximation order of S
equals that of

Siee =spaniM,  (-—j): jeZ* M, S}

(To be precise, the proof of Proposition 3.1 in [BH83,] can be modified
to show that if r is an upper bound on the approximation order of S,,.,
then it is also an upper bound on the approximation order of S, while the
converse is trivial since S),. <= S.) Here, M, ., is the box spiine M(-, ), ie.,
the distribution f j[o_‘,,rw,f(E't) dt (cf., e.g., [BH82/83]), with direction
matrix

.
Ei=e), s €15 05, s €4, €5, oy €3],
S ey o Nl
r times s times { times

Further, the linear functional will be constructed from linear functionals
of the form f [, p(D)f, with

T:={xeR™:0<x(2)<x(l)< 1}

a triangle in the three-direction mesh A, and with p a homogeneous
polynomial of degree k. Such functionals vanish on I7 _,, hence also vanish
on any M, , with r+s+r—2<k. It is proved in [BH83,] that, for
k>2p+1, S is spanned by the integer translates of the box splines of
degree <k in S and the box splines M, with « in

A=A, 0A,0A4,,



28 DE BOOR AND JIA

where
(k—p+1—0i0,p+1+i)i=1,., k=2p—1},

1.

i

2.

NN

{
Ho+2—iik—p)i=1.,p+1},
=10, p+ 1+ k—p+1—i)i=1,.,k=2p—1}.

(These are exactly the box splines whose restriction to the line
e, + R(e, —e,) coincide there with a(n appropriately scaled univariate)
B-spline of degree k£ for the knot sequence in which each of 0, %, 1 occurs
exactly & — p times.) This implies that it is sufficient to require our linear
functional 4 to vanish on M, (-— j) for xe A and je Z? in order to ensure
that 4 L S,..

(1)LEMMA. For B:=(1, 1,0), there exists a set B of p+ 1 homogeneous
polynomials’ of degree k such that, on T+ 77,

pDYM,=c,,V* M, peB aecA, (2)
with the constants ¢, , satisfying
Cpa=0, aEA;.

Here and below, we follow the convenient convention that V' =0 if
1(i) <0 for some /.

(3)LEMMA. For y:=(1,0, 1), there exists a set C of p+ 1 homogeneous
polvnomials of degree k such that, on T+ 77,

pDM,=c, V*"'M,, peC ucA, (4)
with the constants ¢, , satisfying
¢, =0, xeA;.

Now note that M, and M agree on all of T+ Z? with the characteristic
function
Lr

of the triangle 7. Thus,

Vaz—[i B
pDYM,=c,, {V’ .,}Xr on T+ Z?, for pe{c.

Further,

VZV“ /{=V2V3V“ - llil,l)zvjva ¥
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Thus, if
Y w(p)c,,=0 forall aed,ud,, (5)
peBuC
then
JM,=0 on T+Z>forallaeA,
with
Ji=3 w(p)Vyp(D)+ Y w(p)V,p(D) (6)
peB peC

(since c,,=0 for pe BUC and o€ 4,). Here, we may (and do) choose
w#0, since #(BuC)=2p+2>k—p=#(A4,0V 4,)

Next, we construct some ge 7, ,, for which Jg=2. For this, note that
p(DMI, . < II, for any pe Bu C, while V,= D, on IT,. This implies that

J= Y w(p)p(D) onfl,,,,

peBuC
with

~.=p{<929'>’ pEB;
' {es, D, peC.

(7)LEMMA. If k>2p + 1, then the sets B and C in (1) and (3) can be so
chosen that {p:pe Bu C} is a linearly independent subset of I1,  |.

To make use of this lemma, we need to restrict attention to the case
k>2p+ 1. We do this by, possibly, decreasing p (and hence increasing S)
to force the inequality k> 2p + 1. Of course, we must make sure that we
still have k <3p+ 2. Assuming that p’ is the largest integer for which
k>2p +1, we have k<2p'+3<3p’+2 except, possibly, when p'<I,
hence k<5. But, for k<5 and p =1, the approximation order of S is
known [J86, BH88] to satisfy our theorem’s claim.

Thus, for k>5, we may assume without loss of generality that
k> 2p+ 1, hence use the lemma to conclude, from the fact that w 0, that
J=g(D)on I, , for some nontrivial homogeneous polynomial ¢ of degree
k+ 1. This implies that J maps /I, ,, onto II,, hence Jg=2 for some
g€ ”k + 1

Since JM,=0 on T+ 7% and J commutes with any integer shift, it
follows that the linear functional

).:f»—»LJf
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vanishes on S| ., but takes the value 1 on that particular polynomial g.
Further, 4 has the form

A=4,V,4+ 1.V,
with
Life | pADV
for some homogeneous polynomials p; of degree k. This shows that
Yy it'=0,
je 2!
in the sense that, for any compact set, there is some #, such that any sum
it
jeZ’n[—n.n}

with 7> ny has no support in that compact set.
We make use of 4 in the following more precise fashion. Define

H =Y 1
j=1
Then H,,V,=1"— 1. Therefore,
Ai=d Y v =k = D H G H 4 A - 1) H W o,
jeZ*n{1..n3?
has support only in
T,=T+ Y  Yje=T+]
jeZd~10..018

and is, more explicitly, of the form
oY [ U pAD) + ) DS,

with b()), ¢(j)e {—1,0, 1} for all j. (Put differently, the mesh functions b
and c¢ are first differences of the discrete box spline assciated with the three
directions ¢,, e,, ¢5, hence are piecewise constant.) Since t'ge g + IT, and
4" vanishes on I7,, this implies that A”’g = n®. Further, as a functional on,
say, IT},, ;< L([—1..2n+1]%), A" has norm

A" < const,,
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since, on each T+ j, any f of interest (i.e., any f€ S+ span g) reduces to
a polynomial of degree <k -+ 1, hence

[ p,(D)f’ <const; [ |/l

T+ T+j

with const, derived from Markov’s inequality.

Let now h:=1/n and set o: f+ f(-/h). We are interested in a lower
bound for the L,(G)-distance of g from S,:=0S. Since [[f],(G')<
consty | fli (G')< constg. || fIl ,(G) for any bounded subset G' of G,
it is sufficient to restrict attention to p=1 and bounded G. Moreover,
after a translation and a scaling, we may assume that the domain G of
interest contains [ —A..(2n+ 1)k]% Then [[A"o~"|| <const, 4%, and
Mg 1 1 S,, while A"g g = A"Mg( h)=h**11"g = h* =2 Consequently,

dist,( g, S,,) = A"a " 'g/|A"a || = h* ~*/(const, h~?) = const h*,

for some h-independent positive const. This finishes the proof of the
theorem.

PROOF OF THE TECHNICAL LEMMATA

We take B and C from the set of polynomials
3 .
Pa = 1—[ <ei’ ° >u“)
i=1

with ae Z°>, la| =k.
For the computation of p,(D)M,, we rely entirely on the differentiation
formula [BH82/83]

D M(+ 5) =V, M(-, E\¢)

valid for any particular direction ¢ from the direction set = for the box
spline M(-, £), and on the fact that the (closed) support of the box spline
M(-, =) is the set

Y [0..1]&

el

We choose B to consist of the p+ 1 polynomials p, with a(3)=k —p.
Then a(3) = x(3) for any x € 4, hence

PADYM, =V§(3)Pa(1).a(21,a(3)7 A DIYM 1) ai2y.0- (8)

640:72:1-3
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Since 2(2)=0 for ae 4, and a(1)=0 for x€ 4,, this shows that p (D)M,
has no support in T+ Z? when a€ 4, U A,, hence (2) holds for this case
with ¢, ,=0. For the remaining case, x € 4,, we have (3)=k — p=a(3),
and therefore, more explicitly than (8),

— 723 pull) 2(2)
PDYM, =V DI DIIIM 1 si2v05

and this has support in T+ Z? if and only if a(i) < (i) for i=1, 2. Since
a(1)+a(2)=o(1)+ a(2) — 2, this condition is met if and only f a=a +
with = (1, 1, 0), and in that case we get

PADYM, =V* "M,

This finishes the proof of (1)Lemma.

The verification of (3)Lemma proceeds analogously. We choose C to
consist of the p + 1 polynomials p, with a(2)=k — p. Then a(2) = a(2) for
any a € A, hence

pADIM, = Vg'z'Pu(l).am 2.3 DYM (1) 0.3 9)

Since a{1)=0 for xe A,, this shows that p,(D)M, has no support in
T+ Z* when a€ 4,, hence (4) holds for this case with ¢, ,=0. For the
remaining case, i.e., for xe 4, uAd,, we make use of the fact that
D,=D;— D, to write (9) in the form

—Ux2) j(1y i(3)
pD)M, =V] ZC/Dl DM 10,0030
J

with the sum over all j of the form (a(l)+r,0,a(3)+1¢) with r+1=
a{2y—«(2). Thus, j(1)+ j(3)=a(1)+ «(3)—2; hence the only terms with
some support in T+ Z° are of the form j(i)=a(i)—1 for i=1, 3, and in
that case,

D,Il'(l) D;’(J)Mﬂl).().a(})zvl(l) - 1,0, 2(3) - IM‘,"

As to (7)Lemma, we note first that §:={ﬁ:peB} i1s linearly
independent since it consists of the sequence

<62’ '><€3’ '>krﬂ{<elv ‘>i<e2v '>‘, ’;j:-(), ooy P}’

and e, e, form a basis for R%. Analogously, C:={p:peC} is linearly
independent since it consists of the sequence

es, '>k ?{es, '>{<€1’ ‘>/<£’3, P j=0, ---’P},

and e, e, form a basis for R Thus it is sufficient to prove that span B has
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only trivial intersection with span C. But this follows from the facts
(obtainable by substituting e, — e, for ¢, and collecting terms) that

Ecspan{ <€2’ '>1+j<€3» '>k7j:j=0a ey p}
and
Ccspan{ <62’ '>k /<€3, '>l +j:j=0’ ey p}*

since k — p > p + 1, by assumption.
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