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It is shown that the approximation order from bivariate piecewise polynomials
of degree ~k in C" is no better than k when k < 3p + 2 (even if only the three
direction mesh is considered). This complements the earlier result that the
approximation order is full, i.e., equals k + 1, for any triangulation as soon as
k:;, 3p + 2. ( 1993 Academic Pres,. Inc.

INTRODUCTION

It is the purpose of this note to show that the approximation order from
the space

Ill'
k.A

of all piecewise polynomial functions in CI' of polynomial degree ~ k on a
triangulation L1 of 1R 2 is, in general, no better than k in case k < 3p + 2.
This complements the result of [BH88] that the approximation order from
Il~.A for an arbitrary mesh L1 is k + 1 if k ~ 3p + 2.

* Supported by the National Science Foundation under Grant DMS-9000053 and by the
United States Army under Contract DAAL03-90-G-0090.

24
0021-9045/93 55.00
Copyright :(:1 1993 by Academic Press, Inc.
All rights or reproduction in any form reserved.



UPPER BOUNDS ON APPROXIMATION ORDER 25

Here, we define the approximation order of a space S of functions on [R2

to be the largest real number r for which

dist(f, a II S) «const! h'

for any sufficiently smooth function f, with the distance measured in the
Lp-norm (1 «p « 00) on [R2 (or some suitable subset G of [R2), and with
the scaling map all defined by

In particular, the approximation order from flx'J cannot be better than
k + I regardless of p and is trivially k + I in case p = - I or O. Thus, an
upper bound of k is an indication of the price being paid for having p much
larger than 0.

It turns' our that the upper bound to be proven here already holds when
L1 is a very simple triangulation, viz. the three-direction mesh, i.e., the mesh

3

L1 := U [Re, + 7L 2

i= t

with

e2 ;= (0, I),

A first result along these lines was given in [BH83) J, where it was shown
that the approximation order of fl~.J (with L1 the three-direction mesh) is
only 3, which was surprising in view of the fact that all cubic polynomials
are contained locally in this space. [J83 J showed the corresponding result
for C1-quartics on the three-direction mesh and [BH83 2 J provided upper
and lower bounds for the approximation order of

S:= flf.'J

for arbitrary k and p.
For 2k - 3p «7, the approximation order of S was completely deter

mined in [186]. Since it is easy to determine the approximation order of
any space spanned by the translates of one box spline [BH82/83 J with the
aid of quasi-interpolants, it is tempting to consider, more generally, local
approximations from S, i.e., approximations to the given f which are linear
combinations of box splines in S, with the restriction that the coefficient of
any particular box spline should depend only on the behavior of f near the
support of that box spline. The resulting approximation order has been
termed the local approximation order of S in [BJ]. The local approxima
tion order of S was entirely determined in [J88]. In particular, it is shown
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there that the local approximation order of S can never be full, i.e., equal
k + 1. It is also conjectured there that the local approximation order equals
the approximation order when k < 3p + 2. In addition, it is shown in [J88]
that the approximation order of S is at least k when k;:, 2p + 2. This,
together with the result to be proved here and the result from [J86], gives
the precise approximation order for S for p ~ 5 and all k. Finally, the fact
that the approximation order from S is only k when k = 3p + I was
demonstrated in [BH88] for p = 1, 2, 3.

In all of these references cited, only the approximation order with respect
to the max-norm was considered.

In addition to the notation already defined in the course of the above
introduction, we also use the following: We denote by

the collection of all polynomials of total degree ~ k « k). We denote by

<.1',.)

the linear polynomial whose value at x E [R2 is the scalar product <y, x) of
y with x. We write

D,.:= y(l) D) + y(2) D2

for the (unnormalized) directional derivative in the direction y, with D, the
partial derivative with respect to the ith argument, i = I, 2. Thus,

but we use this abbreviation also for i = 3, and use, correspondingly, the
convenient abbreviation

3

D"·= n D'd/). , '
i= I

with aE.z~. For such a, we write

lal := L: a(i).

Correspondingly, we write

3

r{/:= n r~(i)

i= I

with

and

and

3

V.,·= n V.,li)• i ,

i= 1
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Finally, we denote by p(D) := L, c(~)D' the constant coefficient differen
tial operator associated with the polynomial p =L, c(ct)( )'. For example,

D;= (e" D).

MAIN RESULT

The main result of this note is the following

THEOREM. The approximation order of S:= JlL1 (in any L p , 1 :( p:(x)
is at hest k when k < 3p + 2, p > 0, and A is the three-direction mesh.

In this section, we outline the proof, leaving the verification of certain
technical lemmata to a subsequent section.

The proof uses the same ideas with which the special cases p = 1 and 2
were handled in [BH83 1J, [J83 J, and [BH88 J, respectively, i.e., the
construction of a local linear functional which vanishes on Jl~.A but does
not vanish on some homogeneous polynomial of degree k + 1 and whose
integer translates add up to the zero linear functional. But the construction
of the specific linear functional follows the rather different lines of [186].

To begin with, recall from [BH83 2 J that the approximation order of S
equals that of

(To be precise, the proof of Proposition 3.1 in [BH83 2 J can be modified
to show that if r is an upper bound on the approximation order of Sloe>
then it is also an upper bound on the approximation order of S, while the
converse is trivial since Sloe s;:: S.) Here, Mr..,.f is the box spline M( .,3"), i.e.,
the distribution f I-> J[0 lin" ,f(3"t) dt (cr., e.g., [BH82/83 J), with direction
matrix

E:= [el' ... ~ et, e2, ..., e2' e3, ... , e3]'
~ ---------- -----------r times s times t times

Further, the linear functional will be constructed from linear functionals
of the form fl-> JT p(D)j, with

T:= {XE [R2: 0<x(2) <x(I)< I}

a triangle in the three-direction mesh A, and with p a homogeneous
polynomial of degree k. Such functionals vanish on Jl <k> hence also vanish
on any Mr.,.f with r + s + t - 2 < k It is proved in [BH83 2J that, for
k> 2p + I, Sloe is spanned by the integer translates of the box splines of
degree <k in S and the box splines M, with a in

A :=A l uA 2 uA1 ,
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Al := {(k - p + I - i, 0, P + I + i): i = I, ... , k - 2p - I },

A 2 : = {(p + 2 - i, i, k - p): i = I, ..., p + I },

A J := {(O, p + I + i, k - p + I - i): i = I, ... , k - 2p - I }.

(These are exactly the box splines whose restriction to the line
e l + lR(e 2 - e1 ) coincide there with a(n appropriately scaled univariate)
B-spline of degree k for the knot sequence in which each of 0, !' I occurs
exactly k - p times.) This implies that it is sufficient to require our linear
functional i, to vanish on M,(· - j) for :J. E A and j E 7L 2 in order to ensure
that A .1 Sloe'

(I )LEMMA. For fi:= (I, 1,0), there exists a set B of p + I homogeneous
polynomials' of degree k such that, on T + 7L 2

,

with the constants c"., sati.living

pE B,:J. E A, (2)

Here and below, we follow the convenient convention that '\7"1 = ° if
)'(i) < °for some i.

(3 )LEMMA. For}':= (1, 0, I), there exists a set C of p + I homogeneous
polynomials of degree k such that, on T + 7L 2

,

with the constants cj>.X satis(ving

pE C, :J.EA, (4)

Now note that Mil and M, agree on all of T + lf2 with the characteristic
function

of the triangle T. Thus,

{
'\7' - f

l
}

p(D) M, = c"., '\7' , Xr

Further,

on T+7L 2
, for PE{~.
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then

L 11'( p) C1'.' = 0
pE BuC

for all IX E A J U A 2' (5)

with

JM,=O on T+Z 2 forallIXEA,

J:= L w(p)V2 p(D)+ L w(p)V3 P(D)
pEB pEe

(6)

(since cp.,=O for pEBuC and IXEA 3 ). Here, we may (and do) choose
11'#0, since #(BuC)=2p+2>k-p= #(A J uA 2 ).

Next, we construct some g E flk + J for which Jg = 2. For this, note that
p(D)flk + 1 C fl, for any p E B u C, while Vi = D; on fl,. This implies that

with

J= I w(p)p(D)
pE Bu C

_ {<e2,.),
p :=p <e3, .),

on flk + J,

pEB;

pE C.

(7)LEMMA. If k > 2p + 1, then the sets Band C in (1) and (3) can be so
chosen that {p: p E B u C} is a linearly independent subset of fl k + "

To make use of this lemma, we need to restrict attention to the case
k> 2p + 1. We do this by, possibly, decreasing p (and hence increasing S)
to force the inequality k> 2p + I. Of course, we must make sure that we
still have k < 3p + 2. Assuming that p' is the largest integer for which
k> 2p' + 1, we have k ~ 2p' + 3 < 3p' + 2 except, possibly, when p' ~ 1,
hence k ~ 5. But, for k ~ 5 and p ~ 1, the approximation order of S is
known [J86, BH88] to satisfy our theorem's claim.

Thus, for k> 5, we may assume without loss of generality that
k> 2p + 1, hence use the lemma to conclude, from the fact that II' i= 0, that
J = q(D) on flk+ I for some nontrivial homogeneous polynomial q of degree
k + 1. This implies that J maps fl k+, onto flo, hence Jg = 2 for some
gEflk+,·

Since JM, = 0 on T + Z2, and J commutes with any integer shift, it
follows that the linear functional
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vanishes on Sloe' but takes the value I on that particular polynomial g.
Further, ). has the form

with

for some homogeneous polynomials Pi of degree k. This shows that

L Ar'=O,
je ;[2

in the sense that, for any compact set, there is some no such that any sum

I Ar i

jEZ 2 n[-n .nJ2

with n> no has no support in that compact set.
We make use of ). in the following more precise fashion. Define

/I

H i.',:= L r{.
i~ ,

Then Hi.n"V j = r;' - 1. Therefore,

).1"):= A L r i =A2(r;-I)Ht.nH3.n+A3(r~-I)Ht.nH2.n
jE.l J n[1.n]3

has support only in

Tn := T+ I L}(i)e j =: T+/,
ieZJ ,.,[O.n]3 i

and is, more explicitly, of the form

fl-+ l: f (h(j)P2(D)+c(j)P3(D))f,
iEt T+/

with h(j), c(j) E { - 1, 0, I } for all j. (Put differently, the mesh functions b
and c are first differences of the discrete box spline assciated with the three
directions e" e2, e3, hence are piecewise constant.) Since rig E g + ilk and
A(n) vanishes on ilk' this implies that A(n)g=n3. Further, as a functional on,
say, il~+ t.,J C L,([ -I .. 2n + 1]2), A(n) has norm

11).1"111:;;; constkt
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since, on each T + j, any f of interest (i.e., any f E S + span g) reduces to
a polynomial of degree ~ k + I, hence

If PI(D)fl ~constk J . IfI
7 +/ T+/

with constk derived from Markov's inequality.
Let now h:= lin and set a:f'r---+f(·lh). We are interested in a lower

bound for the Lp(G)-distance of g from Sh:= uS. Since Ilflll(G') ~
const G IIfllp(G')~constG·llfllp(G) for any bounded subset G' of G,
it is sufficient to restrict attention to p = 1 and bounded G. Moreover,
after a translation and a scaling, we may assume that the domain G of
interest contains [-h .. (2n+l)hY Then IIA(n)a-lll~constkh-2, and
i.1nlU' 1 1- Sh' while ).lnlu-lg=).(nlg(-h)=hk+l).(nlg=hk-2. Consequently,

for some h-independent positive const. This finishes the proof of the
theorem.

PROOF OF THE TECHNICAL LEMMATA

We take Band C from the set of polynomials

3

P '= f1 <e .)"Ii)
a . "

i= I

with aEZ~, lal =k.
For the computation of p,,( D) M" we rely entirely on the differentiation

formula [BH82/83]

D~M(·, 2) = V~M(·, 2\~)

valid for any particular direction ~ from the direction set 2 for the box
spline M(·, 2), and on the fact that the (closed) support of the box spline
M( ., 2) is the set

I [0 .. l]~.

We choose B to consist of the p + 1 polynomials p" with a(3) = k - p.
Then a(3)~~(3) for any ~EA, hence

(8 )

640721-3
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Since ::x(2) =0 for ::XEA I and rL(I)=O for ::XEA), this shows that Pa(D)M,
has no support in T+Z 2 when::XEA , uA), hence (2) holds for this case
with cp.,=O. For the remaining case, rLEA 2 , we have ::x(3)=k-p=a(3),
and therefore, more explicitly than (8),

and this has support in T + Z 2 if and only if a( i) <::xl i) for i = I, 2. Since
a( 1) + a(2) = rL( 1) + ::x(2) - 2, this condition is met if and only if rL = a + [3
with [3=(1, 1,0), and in that case we get

pJD)M,='V' liMp.

This finishes the proof of (1 )Lemma.
The verification of (3 )Lemma proceeds analogously. We choose C to

consist of the p + I polynomials Pa with a(2) = k - p. Then a(2) ~::x(2) for
any rL E A, hence

(9)

Since ::xl 1) = ° for rL E A.1 , this shows that pAD) M, has no support in
T+Z 2 when (lEA), hence (4) holds for this case with cp.,=O. For the
remaining case, i.e., for ::x E A I U A 2, we make use of the fact that
D2 = D) - D J to write (9) in the form

(D)M _'<7'121, D,(IIDiI3lMPa , - V 2 L. Ci I ) x(II.O.,(3)'

I

with the sum over all j of the form (a(I)+r,0,a(3)+t) with r+t=
a(2) - ::x(2). Thus, j( 1) + j( 3) = rL( 1) + rL( 3) ~ 2; hence the only terms with
some support in T + Z2 are of the form jli) = rLli) - I for i = I, 3, and in
that case,

Dil I} Dil3lM = 'V'( I} 1.0.,(3) - 1M
I 3 (xll),O, :X13) 1'.

As to (7) Lemma, we note first that B: = {p: P E B} IS linearly
independent since it consists of the sequence

and e l ,e2 form a basis for [R2. Analogously, C:= {P:PEC} is linearly
independent since it consists of the sequence

and e I' C1 form a basis for [R2. Thus it is sufficient to prove that span B has
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only trivial intersection with span E. But this follows from the facts
(obtainable by substituting e3 - e2 for e l and coIlecting terms) that

B- {( )l+i ( )k-/. '-0 }cspan e2,' e3,' .J- , ...,p

and

C- f()k.i< )1+/. '-0 }c span l e2,' e3, . . J - , ... , p ,

since k - p > p + 1, by assumption.
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