# A Sharp Upper Bound on the Approximation Order of Smooth Bivariate PP Functions 

C. DE BOOR*<br>Center for the Mathematical Sciences, University of Wisconsin-Madison, 610 Walnut St., Madison, Wisconsin 53705, U.S.A.

## AND

R. Q. JIA

Department of Mathematics, University of Oregon, Eugene, Oregon 97403, U.S.A.

Communicated by Sherman D. Riemenschneider
Received January 13, 1991; accepted in revised form June 10, 1991
DEDICATED TO THE MEMORY OF I. J. SCHOENBERG


#### Abstract

It is shown that the approximation order from bivariate piecewise polynomials of degree $\leqslant k$ in $C^{\rho}$ is no better than $k$ when $k<3 \rho+2$ (even if only the threedirection mesh is considered). This complements the earlier result that the approximation order is full, i.e., equals $k+1$, for any triangulation as soon as $k \geqslant 3 \rho+2$. 1993 Academic Press, Inc.


## Introduction

It is the purpose of this note to show that the approximation order from the space

$$
\Pi_{k, 4}^{p}
$$

of all piecewise polynomial functions in $C^{\rho}$ of polynomial degree $\leqslant k$ on a triangulation $\Delta$ of $\mathbb{R}^{2}$ is, in general, no better than $k$ in case $k<3 \rho+2$. This complements the result of [BH88] that the approximation order from $\Pi_{k, d}^{p}$ for an arbitrary mesh $\Delta$ is $k+1$ if $k \geqslant 3 \rho+2$.

[^0]Here, we define the approximation order of a space $S$ of functions on $\mathbb{R}^{2}$ to be the largest real number $r$ for which

$$
\operatorname{dist}\left(f, \sigma_{h} S\right) \leqslant \text { const }_{f} h^{r}
$$

for any sufficiently smooth function $f$, with the distance measured in the $L_{p}$-norm ( $1 \leqslant p \leqslant \infty$ ) on $\mathbb{R}^{2}$ (or some suitable subset $G$ of $\mathbb{R}^{2}$ ), and with the scaling map $\sigma_{h}$ defined by

$$
\sigma_{h} f:=f(\cdot / h) .
$$

In particular, the approximation order from $\Pi_{k, s}^{\rho}$ cannot be better than $k+1$ regardless of $\rho$ and is trivially $k+1$ in case $\rho=-1$ or 0 . Thus, an upper bound of $k$ is an indication of the price being paid for having $\rho$ much larger than 0 .

It turns our that the upper bound to be proven here already holds when $\Delta$ is a very simple triangulation, viz. the three-direction mesh, i.e., the mesh

$$
\Delta:=\bigcup_{i=1}^{3} \mathbb{R} e_{i}+\mathbb{Z}^{2}
$$

with

$$
e_{1}:=(1,0), \quad e_{2}:=(0,1), \quad e_{3}:=(1,1)=e_{1}+e_{2}
$$

A first result along these lines was given in [ $\mathrm{BH} 83_{1}$ ], where it was shown that the approximation order of $\Pi_{3.4}^{1}$ (with $\Delta$ the three-direction mesh) is only 3 , which was surprising in view of the fact that all cubic polynomials are contained locally in this space. [J83] showed the corresponding result for $C^{1}$-quartics on the three-direction mesh and $\left[\mathrm{BH} 83_{2}\right.$ ] provided upper and lower bounds for the approximation order of

$$
S:=\Pi_{k, A}^{p}
$$

for arbitrary $k$ and $\rho$.
For $2 k-3 \rho \leqslant 7$, the approximation order of $S$ was completely determined in [J86]. Since it is easy to determine the approximation order of any space spanned by the translates of one box spline [BH82/83] with the aid of quasi-interpolants, it is tempting to consider, more generally, local approximations from $S$, i.e., approximations to the given $f$ which are linear combinations of box splines in $S$, with the restriction that the coefficient of any particular box spline should depend only on the behavior of $f$ near the support of that box spline. The resulting approximation order has been termed the local approximation order of $S$ in [BJ]. The local approximation order of $S$ was entirely determined in [J88]. In particular, it is shown
there that the local approximation order of $S$ can never be full, i.e., equal $k+1$. It is also conjectured there that the local approximation order equals the approximation order when $k<3 \rho+2$. In addition, it is shown in [J88] that the approximation order of $S$ is at least $k$ when $k \geqslant 2 \rho+2$. This, together with the result to be proved here and the result from [J86], gives the precise approximation order for $S$ for $\rho \leqslant 5$ and all $k$. Finally, the fact that the approximation order from $S$ is only $k$ when $k=3 \rho+1$ was demonstrated in [ BH 88 ] for $\rho=1,2,3$.

In all of these references cited, only the approximation order with respect to the max-norm was considered.

In addition to the notation already defined in the course of the above introduction, we also use the following: We denote by

$$
\Pi_{k} \quad\left(\Pi_{<k}\right)
$$

the collection of all polynomials of total degree $\leqslant k(<k)$. We denote by

$$
\langle y, \cdot\rangle
$$

the linear polynomial whose value at $x \in \mathbb{R}^{2}$ is the scalar product $\langle y, x\rangle$ of $y$ with $x$. We write

$$
D_{y}:=y(1) D_{1}+y(2) D_{2}
$$

for the (unnormalized) directional derivative in the direction $y$, with $D_{i}$ the partial derivative with respect to the $i$ th argument, $i=1,2$. Thus,

$$
D_{i}=D_{\iota_{i}},
$$

but we use this abbreviation also for $i=3$, and use, correspondingly, the convenient abbreviation

$$
D^{a}:=\prod_{i=1}^{3} D_{i}^{(a i)}
$$

with $a \in \mathbb{Z}_{+}^{3}$. For such $a$, we write

$$
|a|:=\sum_{i} a(i) .
$$

Correspondingly, we write

$$
\tau^{a}:=\prod_{i=1}^{3} \tau_{i}^{a(i)} \quad \text { and } \quad \nabla^{a}:=\prod_{i=1}^{3} \nabla_{i}^{a(i)}
$$

with

$$
\tau_{i} f:=f\left(\cdot+e_{i}\right) \quad \text { and } \quad \nabla_{i}:=1-\tau_{i}{ }^{\prime} .
$$

Finally, we denote by $p(D):=\sum_{\chi} c(x) D^{\alpha}$ the constant coefficient differential operator associated with the polynomial $p=\Sigma_{\alpha} c(\alpha)()^{x}$. For example,

$$
D_{i}=\left\langle e_{i}, D\right\rangle .
$$

## Main Result

The main result of this note is the following
Theorem. The approximation order of $S:=\Pi_{k, A}^{\rho}\left(\right.$ in any $\left.L_{p}, 1 \leqslant p \leqslant \infty\right)$ is at best $k$ when $k<3 \rho+2, \rho>0$, and $\Delta$ is the three-direction mesh.

In this section, we outline the proof, leaving the verification of certain technical lemmata to a subsequent section.
The proof uses the same ideas with which the special cases $\rho=1$ and 2 were handled in [BH831], [J83], and [BH88], respectively, i.e., the construction of a local linear functional which vanishes on $\Pi_{k, \Delta}^{p}$ but does not vanish on some homogeneous polynomial of degree $k+1$ and whose integer translates add up to the zero linear functional. But the construction of the specific linear functional follows the rather different lines of [J86].

To begin with, recall from [ $\mathrm{BH}_{8} 3_{2}$ ] that the approximation order of $S$ equals that of

$$
S_{\mathrm{loc}}:=\operatorname{span}\left\{M_{r, \ldots, t}(-j): j \in \mathbb{Z}^{2}, M_{r, x, t} \in S\right\} .
$$

(To be precise, the proof of Proposition 3.1 in [ $\mathrm{BH}_{8} 3_{2}$ ] can be modified to show that if $r$ is an upper bound on the approximation order of $S_{\mathrm{toc}}$, then it is also an upper bound on the approximation order of $S$, while the converse is trivial since $S_{\text {toc }} \subseteq S$.) Here, $M_{r ., s, r}$ is the box spline $M(\cdot \Xi)$, i.e., the distribution $f \mapsto \int_{\left[0 \ldots 11^{++}+,\right.} f(\Xi t) d t$ (cf., e.g., [BH82/83]), with direction matrix

$$
\Xi:=\underbrace{e_{1}, \ldots, e_{1}}_{r \text { times }}, \underbrace{e_{2}, \ldots, e_{2}}_{\text {rtimes }}, \underbrace{e_{3}, \ldots, e_{3}}_{\text {times }}] .
$$

Further, the linear functional will be constructed from linear functionals of the form $f \mapsto \int_{T} p(D) f$, with

$$
T:=\left\{x \in \mathbb{R}^{2}: 0<x(2)<x(1)<1\right\}
$$

a triangle in the three-direction mesh $A$, and with $p$ a homogeneous polynomial of degree $k$. Such functionals vanish on $\Pi_{<k}$, hence also vanish on any $M_{r, \ldots, t}$ with $r+s+t-2<k$. It is proved in [ $\left.\mathrm{BH}_{8} 3_{2}\right]$ that, for $k>2 \rho+1, S_{\text {loc }}$ is spanned by the integer translates of the box splines of degree $<k$ in $S$ and the box splines $M_{\gamma}$ with $\alpha$ in

$$
A:=A_{1} \cup A_{2} \cup A_{3},
$$

where

$$
\begin{aligned}
& A_{1}:=\{(k-\rho+1-i, 0, \rho+1+i): i=1, \ldots, k-2 \rho-1\}, \\
& A_{2}:=\{(\rho+2-i, i, k-\rho): i=1, \ldots, \rho+1\}, \\
& A_{3}:=\{(0, \rho+1+i, k-\rho+1-i): i=1, \ldots, k-2 \rho-1\} .
\end{aligned}
$$

(These are exactly the box splines whose restriction to the line $e_{1}+\mathbb{R}\left(e_{2}-e_{1}\right)$ coincide there with a(n appropriately scaled univariate) B-spline of degree $k$ for the knot sequence in which each of $0, \frac{1}{2}, 1$ occurs exactly $k-\rho$ times.) This implies that it is sufficient to require our linear functional $\lambda$ to vanish on $M_{\alpha}(\cdot-j)$ for $\alpha \in A$ and $j \in \mathbb{Z}^{2}$ in order to ensure that $\lambda \perp S_{\mathrm{kc}}$.
(1)Lemma. For $\beta:=(1,1,0)$, there exists a set $B$ of $\rho+1$ homogeneous polynomials of degree $k$ such that, on $T+\mathbb{Z}^{2}$,

$$
\begin{equation*}
p(D) M_{x}=c_{p, \alpha} \nabla^{\alpha} \quad{ }^{\beta} M_{\beta}, \quad p \in B, \alpha \in A, \tag{2}
\end{equation*}
$$

with the constants $c_{p, x}$ satisfying

$$
c_{p, x}=0, \quad \alpha \in A_{3} .
$$

Here and below, we follow the convenient convention that $\nabla^{i}=0$ if $\gamma(i)<0$ for some $i$.
(3)Lemma. For $\gamma:=(1,0,1)$, there exists a set $C$ of $\rho+1$ homogeneous polynomials of degree $k$ such that, on $T+\mathbb{Z}^{2}$,

$$
\begin{equation*}
p(D) M_{x}=c_{p, x} \nabla^{\alpha-\gamma} M_{\gamma}, \quad p \in C, \alpha \in A, \tag{4}
\end{equation*}
$$

with the constants $c_{p . x}$ satisfying

$$
c_{p, x}=0, \quad \alpha \in A_{3} .
$$

Now note that $M_{\beta}$ and $M_{\gamma}$ agree on all of $T+\mathbb{Z}^{2}$ with the characteristic function

$$
\chi_{T}
$$

of the triangle $T$. Thus,

$$
p(D) M_{\alpha}=c_{p, \alpha}\left\{\begin{array}{l}
\nabla^{\alpha-\beta} \\
\nabla^{\alpha} \quad y
\end{array}\right\} \chi_{T} \quad \text { on } T+\mathbb{Z}^{2}, \text { for } p \in\left\{\begin{array}{l}
B \\
C
\end{array}\right.
$$

Further,

$$
\nabla_{2} \nabla^{x-\beta}=\nabla_{2} \nabla_{3} \nabla^{x-(1.1 .1)}=\nabla_{3} \nabla^{x}
$$

Thus, if

$$
\begin{equation*}
\sum_{p \in B \cup C} w(p) c_{p, \alpha}=0 \quad \text { for all } \quad \alpha \in A_{1} \cup A_{2}, \tag{5}
\end{equation*}
$$

then

$$
J M_{x}=0 \quad \text { on } \quad T+\mathbb{Z}^{2} \text { for all } \alpha \in A
$$

with

$$
\begin{equation*}
J:=\sum_{p \in B} w(p) \nabla_{2} p(D)+\sum_{p \in C} w(p) \nabla_{3} p(D) \tag{6}
\end{equation*}
$$

(since $c_{p, x}=0$ for $p \in B \cup C$ and $\alpha \in A_{3}$ ). Here, we may (and do) choose $w \neq 0$, since $\#(B \cup C)=2 \rho+2>k-\rho=\#\left(A_{1} \cup A_{2}\right)$.

Next, we construct some $g \in \Pi_{k+1}$ for which $J g=2$. For this, note that $p(D) \Pi_{k+1} \subset \Pi_{1}$ for any $p \in B \cup C$, while $\nabla_{i}=D_{i}$ on $\Pi_{1}$. This implies that

$$
J=\sum_{p \in B \cup C} w(p) \tilde{p}(D) \quad \text { on } \Pi_{k+1},
$$

with

$$
\tilde{p}:=p \begin{cases}\left\langle e_{2}, \cdot\right\rangle, & p \in B ; \\ \left\langle e_{3}, \cdot\right\rangle, & p \in C .\end{cases}
$$

(7) Lemma. If $k>2 \rho+1$, then the sets $B$ and $C$ in (1) and (3) can be so chosen that $\{\tilde{p}: p \in B \cup C\}$ is a linearly independent subset of $\Pi_{k+1}$.

To make use of this lemma, we need to restrict attention to the case $k>2 \rho+1$. We do this by, possibly, decreasing $\rho$ (and hence increasing $S$ ) to force the inequality $k>2 \rho+1$. Of course, we must make sure that we still have $k<3 \rho+2$. Assuming that $\rho^{\prime}$ is the largest integer for which $k>2 \rho^{\prime}+1$, we have $k \leqslant 2 \rho^{\prime}+3<3 \rho^{\prime}+2$ except, possibly, when $\rho^{\prime} \leqslant 1$, hence $k \leqslant 5$. But, for $k \leqslant 5$ and $\rho \geqslant 1$, the approximation order of $S$ is known [J86, BH88] to satisfy our theorem's claim.

Thus, for $k>5$, we may assume without loss of generality that $k>2 \rho+1$, hence use the lemma to conclude, from the fact that $w \neq 0$, that $J=q(D)$ on $\Pi_{k+1}$ for some nontrivial homogeneous polynomial $q$ of degree $k+1$. This implies that $J$ maps $\Pi_{k+1}$ onto $\Pi_{0}$, hence $J g=2$ for some $g \in \Pi_{k+1}$.

Since $J M_{x}=0$ on $T+\mathbb{Z}^{2}$, and $J$ commutes with any integer shift, it follows that the linear functional

$$
\lambda: f \mapsto \int_{T} J f
$$

vanishes on $S_{\text {loc }}$, but takes the value 1 on that particular polynomial $g$. Further, $i$ has the form

$$
\lambda=\lambda_{2} \nabla_{2}+\lambda_{3} \nabla_{3}
$$

with

$$
\lambda_{i}: f \mapsto \int_{T} p_{i}(D) f
$$

for some homogeneous polynomials $p_{i}$ of degree $k$. This shows that

$$
\sum_{j \in \mathbb{Z}^{2}} \lambda \tau^{j}=0
$$

in the sense that, for any compact set, there is some $n_{0}$ such that any sum

$$
\sum_{j \in \mathbb{Z}^{2} \cap[-n \ldots n]^{2}} i \tau^{j}
$$

with $n>n_{0}$ has no support in that compact set.
We make use of $\lambda$ in the following more precise fashion. Define

$$
H_{i, n}:=\sum_{j=1}^{n} \tau_{i}^{j} .
$$

Then $H_{i, n} \nabla_{i}=\tau_{i}^{n}-1$. Therefore,

$$
\lambda^{(n)}:=\lambda \sum_{j \in \mathbb{Z}^{3} \cap[1, n]^{3}} \tau^{j}=\lambda_{2}\left(\tau_{2}^{n}-1\right) H_{1, n} H_{3, n}+\lambda_{3}\left(\tau_{3}^{n}-1\right) H_{1, n} H_{2, n}
$$

has support only in

$$
T_{n}:=T+\sum_{j \in \mathbb{Z}^{\prime} \cap[0 \ldots n]^{3}} \sum_{i} j(i) e_{i}=: T+I
$$

and is, more explicitly, of the form

$$
f \mapsto \sum_{j \in I} \int_{T+j}\left(b(j) p_{2}(D)+c(j) p_{3}(D)\right) f
$$

with $b(j), c(j) \in\{-1,0,1\}$ for all $j$. (Put differently, the mesh functions $b$ and $c$ are first differences of the discrete box spline assciated with the three directions $e_{1}, e_{2}, e_{3}$, hence are piecewise constant.) Since $\tau^{j} g \in g+\Pi_{k}$ and $\lambda^{(n)}$ vanishes on $\Pi_{k}$, this implies that $\lambda^{(n)} g=n^{3}$. Further, as a functional on, say, $\Pi_{k+1.4}^{0} \subset L_{1}\left([-1 \ldots 2 n+1]^{2}\right), \lambda^{(n)}$ has norm

$$
\left\|\lambda^{(n)}\right\| \leqslant \text { const }_{k},
$$

since, on each $T+j$, any $f$ of interest (i.e., any $f \in S+\operatorname{span} g$ ) reduces to a polynomial of degree $\leqslant k+1$, hence

$$
\left|\int_{T+i} p_{i}(D) f\right| \leqslant \text { const }_{k} \int_{T+j}|f|
$$

with const ${ }_{k}$ derived from Markov's inequality.
Let now $h:=1 / n$ and set $\sigma: f \mapsto f(\cdot / h)$. We are interested in a lower bound for the $L_{p}(G)$-distance of $g$ from $S_{h}:=\sigma S$. Since $\|f\|_{1}\left(G^{\prime}\right) \leqslant$ const $_{G^{*}}\|f\|_{p}\left(G^{\prime}\right) \leqslant$ const $_{G^{\cdot}}\|f\|_{p}(G)$ for any bounded subset $G^{\prime}$ of $G$, it is sufficient to restrict attention to $p=1$ and bounded $G$. Moreover, after a translation and a scaling, we may assume that the domain $G$ of interest contains $[-h \ldots(2 n+1) h]^{2}$. Then $\left\|\lambda^{(n)} \sigma^{-1}\right\| \leqslant$ const $_{k} h^{-2}$, and $\lambda^{(n)} \sigma^{-1} \perp S_{h}$, while $\lambda^{(n)} \sigma^{-1} g=\lambda^{(n)} g(\cdot h)=h^{k+1} \lambda^{(n)} g=h^{k-2}$. Consequently,

$$
\operatorname{dist}_{1}\left(g, S_{h}\right) \geqslant \lambda^{(n)} \sigma^{-1} g /\left\|\lambda^{(n)} \sigma^{-1}\right\| \geqslant h^{k-2} /\left(\text { const }_{k} h^{-2}\right)=\text { const } h^{k},
$$

for some $h$-independent positive const. This finishes the proof of the theorem.

## Proof of the Technical Lemmata

We take $B$ and $C$ from the set of polynomials

$$
p_{a}:=\prod_{i=1}^{3}\left\langle e_{i}, \cdot\right\rangle^{a(i)}
$$

with $a \in \mathbb{Z}_{+}^{3},|a|=k$.
For the computation of $p_{d}(D) M_{x}$, we rely entirely on the differentiation formula [BH82/83]

$$
D_{\xi} M(\cdot, \Xi)=\nabla_{\xi} M(\cdot, \Xi \backslash \xi)
$$

valid for any particular direction $\xi$ from the direction set $\Xi$ for the box spline $M(\cdot, \Xi)$, and on the fact that the (closed) support of the box spline $M(\cdot, \bar{\Sigma})$ is the set

$$
\sum_{\xi \in \Xi}[0 \ldots 1] \xi
$$

We choose $B$ to consist of the $\rho+1$ polynomials $p_{a}$ with $a(3)=k-\rho$. Then $a(3) \geqslant x(3)$ for any $\alpha \in A$, hence

$$
\begin{equation*}
p_{\alpha}(D) M_{x}=\nabla_{3}^{\alpha(3)} p_{a(1), a(2), a(3)-x(3)}(D) M_{x(1), x(2), 0} \tag{8}
\end{equation*}
$$

Since $\alpha(2)=0$ for $\alpha \in A_{1}$ and $\alpha(1)=0$ for $\alpha \in A_{3}$, this shows that $p_{a}(D) M_{\alpha}$ has no support in $T+\mathbb{Z}^{2}$ when $\alpha \in A_{1} \cup A_{3}$, hence (2) holds for this case with $c_{p, x}=0$. For the remaining case, $\alpha \in A_{2}$, we have $\alpha(3)=k-\rho=a(3)$, and therefore, more explicitly than (8),

$$
p_{a}(D) M_{x}=\nabla_{3}^{x(3)} D_{1}^{u(1)} D_{2}^{u(2)} M_{x(1), x(2), 0},
$$

and this has support in $T+\mathbb{Z}^{2}$ if and only if $a(i)<\alpha(i)$ for $i=1,2$. Since $a(1)+a(2)=\alpha(1)+\alpha(2)-2$, this condition is met if and only if $\alpha=a+\beta$ with $\beta=(1,1,0)$, and in that case we get

$$
p_{u}(D) M_{x}=\nabla^{\alpha \cdot \beta} M_{\beta}
$$

This finishes the proof of (1)Lemma.
The verification of (3)Lemma proceeds analogously. We choose $C$ to consist of the $\rho+1$ polynomials $p_{a}$ with $a(2)=k-\rho$. Then $a(2) \geqslant \alpha(2)$ for any $\alpha \in A$, hence

$$
\begin{equation*}
p_{a}(D) M_{x}=\nabla_{2}^{x(2)} p_{a(1), a(2)} \quad x(2), a(3)(D) M_{x(1), 0, x(3)} . \tag{9}
\end{equation*}
$$

Since $\alpha(1)=0$ for $\alpha \in A_{3}$, this shows that $p_{u}(D) M_{\alpha}$ has no support in $T+\mathbb{Z}^{2}$ when $\alpha \in A_{3}$, hence (4) holds for this case with $c_{p, x}=0$. For the remaining case, i.e., for $\alpha \in A_{1} \cup A_{2}$, we make use of the fact that $D_{2}=D_{3}-D_{1}$ to write (9) in the form

$$
p_{a}(D) M_{x}=\nabla_{2}^{x(2)} \sum_{j} c_{j} D_{1}^{j(1)} D_{3}^{j(3)} M_{x(1), 0, x(3)}
$$

with the sum over all $j$ of the form $(a(1)+r, 0, a(3)+t)$ with $r+t=$ $a(2)-\alpha(2)$. Thus, $j(1)+j(3)=\alpha(1)+\alpha(3)-2$; hence the only terms with some support in $T+\mathbb{Z}^{2}$ are of the form $j(i)=\alpha(i)-1$ for $i=1,3$, and in that case,

$$
D_{1}^{j(1)} D_{3}^{j(3)} M_{x(1), 0, \times(3)}=\nabla^{x(1)-1,0, x(3)-1} M_{\gamma}
$$

As to (7)Lemma, we note first that $\widetilde{B}:=\{\tilde{p}: p \in B\}$ is linearly independent since it consists of the sequence

$$
\left\langle e_{2}, \cdot\right\rangle\left\langle e_{3}, \cdot\right\rangle^{k-p}\left\{\left\langle e_{1}, \cdot\right\rangle^{\prime}\left\langle e_{2}, \cdot\right\rangle^{\prime \prime}: j=0, \ldots, \rho\right\},
$$

and $e_{1}, e_{2}$ form a basis for $\mathbb{R}^{2}$. Analogously, $\bar{C}:=\{\tilde{p}: p \in C\}$ is linearly independent since it consists of the sequence

$$
\left\langle e_{2}, \cdot\right\rangle^{k} \quad \prime\left\langle e_{3}, \cdot\right\rangle\left\{\left\langle e_{1}, \cdot\right\rangle^{\prime}\left\langle e_{3}, \cdot\right\rangle^{\prime-j}: j=0, \ldots, \rho\right\},
$$

and $e_{1}, e_{3}$ form a basis for $\mathbb{R}^{2}$. Thus it is sufficient to prove that span $\tilde{B}$ has
only trivial intersection with span $\bar{C}$. But this follows from the facts (obtainable by substituting $e_{3}-e_{2}$ for $e_{1}$ and collecting terms) that

$$
\widetilde{B} \subset \operatorname{span}\left\{\left\langle e_{2}, \cdot\right\rangle^{1+j}\left\langle e_{3}, \cdot\right\rangle^{k-j}: j=0, \ldots, \rho\right\}
$$

and

$$
\widetilde{C} \subset \operatorname{span}\left\{\left\langle e_{2}, \cdot\right\rangle^{k}{ }^{\prime}\left\langle e_{3}, \cdot\right\rangle^{1+j}: j=0, \ldots, \rho\right\},
$$

since $k-\rho>\rho+1$, by assumption.

## Acknowledgment

We are grateful to Sherman Riemenschneider for a very careful reading of the manuscript and various helpful comments.

## References

[BH8283] C. de Boor and K. Höllig, B-splines from parallelepipeds, J. Anal. Math. 42 (1982/1983), 99-115.
[BH83] C. de Boor and K. Höllig, Approximation order from bivariate $C^{\prime}$-cubics: A counterexample, Proc. Amer. Math. Soc. 87 (1983), 649-655.
[BH832] C. de Boor anid K. Höllig, Bivariate box splines and smooth pp functions on a three-direction mesh. J. Comput. Appl. Math. 9 (1983), 13-28.
[BH88] C. de Boor and K. Höllig, Approximation power of smooth bivariate pp functions, Math. Z. 197 (1988), 343-363.
[BJ] C. de Boor and R. Q. Jia, Controlled approximation and a characterization of local approximation order, Proc. Amer. Math. Soc. 95 (1985), 547-553.
[J83] R. Q. JIA, Approximation by smooth bivariate splines on a three-direction mesh, in "Approximation Theory IV" (C. K. Chui, L. L. Schumaker, and J. Ward, Eds.), pp. 539-545, Academic Press, New York, 1983.
[J86] R. Q. Jia, Approximation order from certain spaces of smooth bivariate splines on a three-direction mesh, Trans. Amer. Math. Soc. 295 (1986), 199-212.
[J88] R. Q. Jia. Local approximation order of box splines, Scientia Sinica 31 (1988), 274-285.


[^0]:    * Supported by the National Science Foundation under Grant DMS-9000053 and by the United States Army under Contract DAAL03-90-G-0090.

